Introduction to the iPOP-UP HPC cluster

Julien Rey Olivier Kirsh Magali Hennion

March 2024

Rey, Kirsh and Hennion

Introduction to the iPOP-UP HPC cluster

March 2024

Table of Contents

Introduction

- 2 The iPOP-UP@RPBS HPC cluster
- In practice 3
- Slurm usage

Tools

2/37

< 回 > < 三 > < 三 >

Who is this training for

- You work at Université Paris Cité
- You need (or might need) more computational power than you currently have
- You are familiar with Unix systems and Bash

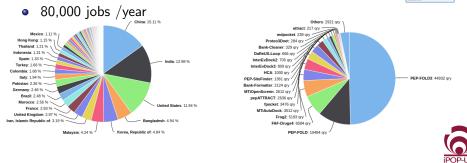
3/37

< ∃⇒

The RPBS platform

Missions:

- Development of Structural Bioinformatics methods
- Services deployment on the computing resource
- Expertise and training
- Hardware hosting

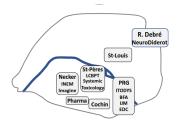


4/37

→ ∃ →

The RPBS Web portal

- https://mobyle.rpbs.univ-paris-diderot.fr: free access
- 30+ Structural Bioinformatics services
- 1 million CPU hours /year



э

5/37

イロト イボト イヨト イヨト

The iPOP-UP project

- iPOP-UP: <u>Integrative P</u>latform for <u>O</u>mics <u>P</u>rojects at <u>U</u>niversité de <u>P</u>aris
- Multisite Bioinformatics platform
- Ranging from multiple 'Omics' techniques to structural and chemo- in silico Bioinformatics
- Compute nodes

iPOP-UP : people involved - currently being updated

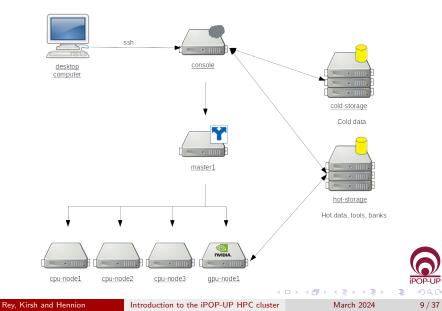
Executive committee

- Franck Letourneur (Cochin)
- Valérie Mezger (EDC)
- Pierre Tufféry (BFA)
- Michel Werner (IJM)
- Karine Audouze (T3S)
- Marc Baaden (LBT)
- Florent Barbault (ITODYS)
- Pierre Gressens (Robert-Debré)
- Pascale Lesage (St Louis)
- Nicolas Leuliot (CiTCoM)
- Bruno Lucas (Cochin)
- Fabiola Terzi (Necker)

Technical committee

- Christophe Cérin (LIPN,USPN)
- Yves Clément (IJM)
- Magali Hennion (EDC)
- Jean-Philippe Jais (Necker)
- Olivier Kirsh (EDC)
- Pierre Poulain (IJM)
- Julien Rey (BFA)
- Guillaume Seith (IGBMC / IFB)
- Nicklas Setterblad (St Louis)

7/37


- 4 回 ト 4 ヨ ト 4 ヨ ト

What is a HPC cluster for ?

- High hardware resources needs
- Long running analyses
- A lot of similar analyses
- Shared work between users
- Free your desktop from the task

What is a HPC cluster ?

Computational hardware

Partitions (groups of compute nodes):

- ipop-up: 16 nodes, 2048 CPUs, GPUs
- rpbs: 20 nodes, 832 CPUs, 9 GPUs (+ 9 nodes, 520 CPUs, 4 GPUs)
- cmpli: 6 nodes, 264 CPUs, 14 GPUs (+ 1 node, 64 CPUs, 2 GPUs)
- epigen: 4 nodes, 128 CPUs
- master-bi: 1 node, 32 CPUs, 3 GPUs

Storage:

- hot-storage: 125TB, very fast
- cold-storage: 240TB, slow + backup (soon)

Virtualization servers, etc...

10/37

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Connexion

Go to your terminal and connect to the cluster using the following line, don't forget to replace username with your personal username.

ssh username@ipop-up.rpbs.univ-paris-diderot.fr

Type in your password and enter.

You@YourComputer:~/PathTo/RNAseqProject5 ssh username@ipop-up.rpbs.univ-paris-diderot.fr
Hosted by: Ressource Parisienne en Bioinformatique Structurale All connections are monitored and recorded.
Hosted by: # # Ressource Parisienne en Bioinformatique Structurale
#
Disconnect IMMEDIATELY if you are not an authorized user!

username@ipop-up.rpbs.univ-paris-diderot.fr's password: Last login: Tue Jan 25 15:21:45 2022 from 172.28.18.162
Last login: lue Jan 25 15:21:45 2022 flum 1/2.28.18.102 Bienvenue sur le cluster 100-UP.
Dielivelide sui le cluster ifor-or.
Pour toute question ou demande de support, rejoignez-nous sur le forum de RPBS : https://discourse.rpbs.univ-paris-diderot.fr
Pour changer Le compte projet par défaut : saccteur update user \$USER set defaultaccount=cproject-name> project1 [
[username@ipop-up ~]\$

11/37

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Note about ssh and security

Your IP will be banned after 5 failed authentication attempts. Each public key count as one authentication attempt. To disable public key authentication:

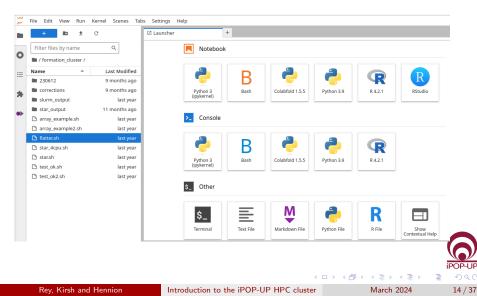
ssh -o PubkeyAuthentication=no rey@ipop-up.rpbs.univ-paris-diderot.fr

A good thing to do, change your password:

[rey@ipop-up ~]\$ passwd

12/37

- 4 回 ト 4 ヨ ト 4 ヨ ト


Connexion - JupyterHub

You can also access the cluster using the web interface JupyterHub. Open a web browser and go to

http://innetanhah amba ania mania didanat

	C Jupyterhub Home Token		hennion	(+ Logout
	Server	Options		
	Project:	biłedc •		
	Partition:	ipop-up *		
	CPU(s):	1		
	Memory (in GB):	2		
	GPU:	0 A100 10.2008 Y		
	Time limit (in hours):	6		
Type in your login and password and enter. Select your project, the resources you need,	and press star	Start		
beleet your project, the resources you need,	and press star	ι.		
				iP

Connexion - JupyterHub

Where you can go, write, or execute

User environments

/shared/home/username

Computations (hot data)

/shared/projects/projectname

Processed data (cold data)

/cold-storage/username

Data banks (read-only) /shared/banks/

Note about quotas

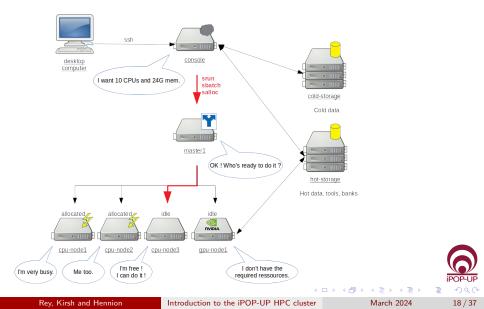
We operate quotas to limit the amount of disk space a group or a project can use on the hot storage filesystem. To check available space for all your projects:

<pre>[rey@ipop-up ~]\$ status_bars alphafold [###] training []</pre>	847 / 0 /	5000 GB 1024 GB				
<pre>[rey@ipop-up ~]\$ lfsquotas training Disk quotas for grp 6011 (gid 6011) Filesystem used /shared/projects/training 96.26M gid 6011 is using default file quota</pre>	quota 1 1T	2T -	files quota 4 0	limit O	grace -	

Jobs **must** be launched from a project directory.

About Slurm

Slurm is the job scheduling system.


It is what will take your code and distribute it on the computing nodes, while ensuring they have the CPU(s) and RAM that you asked for.

It requires specific commands to run (srun, sbatch, salloc, etc...).

You **must** launch jobs with Slurm.

Flowsheet

srun

Launch a (simple) interactive job.

[rey@ipop-up ~]\$ srun hostname

Some parameters can be added to the command line: -partition/-p: request a specific partition -account/-A: select the (project) account -cpus-per-task/-c: request that ncpus be allocated (default: 1 cpu) -mem-per-cpu: specify the required memory per cpu (default: 2GB)

Example:

sbatch

Launch more complex jobs.

myscript.sbatch

#!/bin/bash
#SBATCHpartition=ipop-up
#SBATCHaccount=training
#SBATCHcpus-per-task=8
#SBATCHmem-per-cpu=4GB
#SBATCHoutput=resultat.log
hostname

Example:

[rey@ipop-up ~]\$ sbatch myscript.sbatch

20 / 37

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

About associations

Cluster, account, partition and qos must match your user's associations. To check your associations:

•		sacctmgr sh	5		000	D (000
User	Def Acct	Cluster	Account	Partition	QOS	Def QOS
rey	demo	production	training	ipop-up	normal	
rey	demo	production	demo	ipop-up	normal	
rey	demo	production	alphafold	cmpli	normal	
rey	demo	production	alphafold	rpbs	normal	

4 E b


squeue

List submitted jobs on the cluster:

[rey@ipop-up ~]\$	squeue						
JOBID	PARTITION	NAME	USER	ST	TIME	NODES	NODELIST(REASON)
1008002	cmpli	argtoser	domingue	R	20:58:09	1	gpu-node14
993325	cmpli	calcam-p	ghoula	R	6-20:23:17	1	gpu-node8
993574	ipop-up	amyloid_	meuret	PD	0:00	1	(AssocGrpCPUMinutesLimit)
943019_[165-299]	ipop-up	kappa_va	badaoui	PD	0:00	1	(JobArrayTaskLimit)
943019_117	ipop-up	kappa_va	badaoui	R	7-17:55:27	1	cpu-node132

Some parameters can be added to filter jobs or show more infos: -partition/-p: specify the partition to view -user/-u: request jobs from a list of users -format/-o: specify the information to be displayed

Example:

scancel

Kill a job:

[rey@ipop-up ~]\$ scancel job_id

Rey, Kirsh and Hennion

Introduction to the iPOP-UP HPC cluster

March 2024

<ロト <回ト < 回ト < 回ト < 回ト -

≣ ୬९९ 23/37

sacct

Display accounting data for your running and completed jobs:

[rey@ipop-up ~]\$ sacctformat=JobID,JobName,Start,Elapsed,NCPUS,NodeList,ReqMeM,Statestart → 2023-06-01end 2023-06-30										
JobID	JobName	Start	Elapsed	CPUTime	NCPUS	NodeList	ReqMem	State		
1010778	sleep 2023-	06-08T15:37:19	00:00:30	00:00:30	1	cpu-node133	2000Mc	COMPLETED		

24 / 37

Rey, Kirsh and Hennion

Introduction to the iPOP-UP HPC cluster

March 2024

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E

seff

Report a job's efficiency:

[rey@ipop-up ~]\$ seff 981654 Job ID: 981654 Cluster: production User/Group: lejal/cmpli State: COMPLETED (exit code 0) Cores: 1 CPU Utilized: 04:15:58 CPU Efficiency: 99.72% of 04:16:41 core-walltime Job Wall-clock time: 04:16:41 Memory Utilized: 243.88 GB Memory Efficiency: 97.01% of 251.40 GB

25 / 37

<ロト <問ト < 目ト < 目ト

Some vocabulary

A *job* consists of one or more *steps*, each consisting of one or more *tasks* each using one or more *CPUs*.

- job: A script, typically started with sbatch
- step: A step in the job, typically started with srun
- task: Requested at the job or step level, with -array or -ntasks

Job arrays offer a mecanism for launching a lot of tasks at the same time. Each task of the job will have the environment variable \$SLURM_ARRAY_TASK_ID set to its array index value.

myscript.sbatch

```
#!/bin/bash
#SBATCH --partition=ipop-up
#SBATCH --account=training
#SBATCH --output=resultat_%a.log
#SBATCH --array=1-3
case "$SLURM_ARRAY_TASK_ID" in
    1) fruit='orange';;
    2) fruit='apple';;
    3) fruit='banana';;
esac
echo $fruit
```

March 2024

▲ □ ▶ ▲ □ ▶

[rey@ipop-up ~]\$ sbatch myscript.sbatch

Results:

```
[rey@ipop-up ~]$ ls
resultat_1.log resultat_2.log resultat_3.log
[rey@ipop-up ~]$ tail resultat_*
==> resultat_1.log <==
orange
==> resultat_2.log <==
apple
==> resultat_3.log <==
banana</pre>
```

イロト 不得 トイヨト イヨト

э

Another example:

myscript.sbatch

#!/bin/bash
#SBATCH --partition=ipop-up
#SBATCH --account=training
#SBATCH --output=resultat_%a.log
#SBATCH --array=0-2000%50
#SBATCH --cpus-per-task=2
INPUTS=(*.fq.gz)
fastqc \${INPUTS[\$SLURM_ARRAY_TASK_ID]}

29 / 37

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

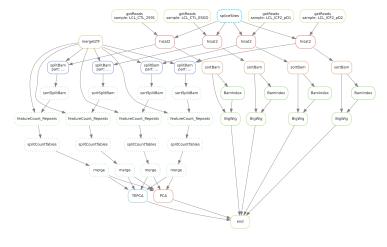
#SBATCH --array=0-15

= 16 jobs (\$SLURM_ARRAY_TASK_ID: from 0 to 15 included).

#SBATCH --array=10-16:2

= 4 jobs (\$SLURM_ARRAY_TASK_ID: 10,12,14,16).

#SBATCH --array=2,3-7:2,11,13


= 6 jobs (\$SLURM_ARRAY_TASK_ID: 2,3,5,7,11,13).

#SBATCH --array=1-10000%32

= 10 000 jobs, max 32 simultaneous jobs

Complex workflows

Use workflow managers such as Snakemake or Nextflow.

Rey, Kirsh and Hennion

Introduction to the iPOP-UP HPC cluster

March 2024

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

31 / 37

э

Environments

Tools are installed on the cluster in virtual environments:

- each tool has its own dependencies (libraries) and it's not possible to make them all coexist in the same environment
- reproducibility: some users need a specific version of a tool

Conda environments

Containers (Apptainer)

Modules

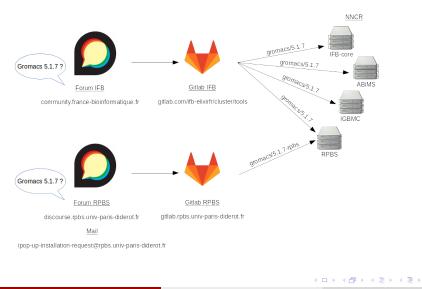
They can be loaded with the module command. Look for the different versions of multiqc:

[rey@ipop-up ~]\$ module avail multiqc multiqc/1.3 multiqc/1.6 multiqc/1.7 multiqc/1.9

Load an environment:

[rey@ipop-up ~] \$ module load multiqc/1.9

List loaded environments:


```
[rey@ipop-up ~]$ module list
Currently Loaded Modulefiles:
1) multiqc/1.9 2) blast/2.13.0
```

・ロット (雪) (小田) (日)

Tools

How tools are installed

Rey, Kirsh and Hennion

Introduction to the iPOP-UP HPC cluster

March 2024

Useful resources

To find out more, the SLURM manual : man sbatch or https://slurm.schedmd.com/sbatch.html

Ask for help or signal problems on the cluster : https://discourse.rpbs.univ-paris-diderot.fr/

iPOP-UP cluster documentation: https://ipop-up.docs.rpbs.univ-paris-diderot.fr/documentation/

Conclusion

Thanks

Alix Silvert

iPOP-UP's technical and steering committees

Rey, Kirsh and Hennion

Introduction to the iPOP-UP HPC cluster

< ≧ ▶ < ≧ ▶ March 2024

-47 ▶

Exercices

https://tinyurl.com/ipop-up-2024

https://parisepigenetics.github.io/bibs/cluster/training_202403/training/

37 / 37

Rey, Kirsh and Hennion

Introduction to the iPOP-UP HPC cluster

< ∃⇒